您现在的位置:机电论文网>> PLC应用>> 正文内容

PLC及特殊功能模块在加热炉自控中的应用(图)

作者: 来源: 发布时间:2009/8/3 14:07:39  点击数:2655

 

1 引言
莱钢轧钢厂中小型车间加热炉为步进炉,用来对连铸坯进行加热。使用燃料为高炉和焦炉混合煤气,钢坯需要经五段加热区加热到适当温度后出炉。加热炉燃烧介质各参数的稳定运行非常重要,它直接影响到烧坯的质量,并涉及着安全生产等重大问题。在生产过程中对加热炉炉压和温度的稳定有严格的要求,比如燃气的流量和温度等等。要想实现这些参数的稳定,并且达到较好地配比有不同的方法可以实现。炉区仪控的热工检测控制量共573点,其中模拟量输入98点,模拟量输出24点,开关量输入261点,开关量输出190点。调节回路16套,分别对加热炉的煤气、空气的流量、压力,炉内温度,换热器的保护等进行控制。

随着微电子技术的发展,PLC产品在其功能和性能指标上都大大地丰富和完善,因此,我们就应用PLC的一些特殊功能模块和一些普通的I/O模块对加热炉的各个参数进行自动控制,包括前面提到的各种参数、以及通过PLC和变频器的通讯实现对变频器输出频率的控制。

2 系统构成
本系统上选用一台上位机MASTER VIEW,一台监控站Operate Station520配以ABB ADVANT BUILD软件包,PLC部分选用ABB MASTER PIECE200/1,它具有成本低、运行可靠、功能较强的特点。本系统大致可以分为三个部分;
(1) 仪控系统以及PID调节部分;
(2) 双交叉限幅燃烧系统;
(3) PLC和变频器的通讯部分。
系统构成框图如图1所示。


图1 系统配置图



3 仪控系统组成及控制功能
现仪控系统16套自动调节回路中,均采用PID调节,操作方式分为自动、手动方式,执行机构有14套电动方式、2套液动方式。操作站实行对炉子的状态监控、意外事件报警等功能。

3.1 仪控系统的检测
入炉煤气、空气的流量检测由管路孔板检测差压,经差压变送器转换成标准信号(4~20mA)进PLC。入炉煤气、空气的压力从管路出压口取煤气压力与大气压力比较所得差压信号,经差压变送器转换成标准信号进PLC。炉子的炉温(S型)、换热器处温度(K型)由热电偶检测进PLC。所有信号经PLC分别计算转换后,参与控制,并可在操作站显示。
3.2 加热炉压力控制
为保证助燃空气与煤气压力保持稳定、使炉内燃烧顺利进行,煤气和空气的压力必须进行控制。加热炉炉内压力过高,过低都不恰当,过高会使炉门喷火并损伤炉子设备,过低会使加热炉吸入冷空气,影响加热炉燃烧质量及效果,炉内压力的控制也很重要。
(1) 助燃空气压力控制
助燃空气压力的大小,是保证喷嘴正常工作的重要条件。助燃空气压力调节是PID调节。如果设定值与反馈值存在偏差,PID调节开始进行,尽可能在短时间内使偏差最小。当反馈值大于设定值,经PID运算后向阀门输出控制信号,使阀门关小,于是压力下降,当反馈值小于设定值,经PID运算向阀门输出信号,使阀门开大,压力升高。
(2) 煤气压力控制
煤气压力控制阀主要起安全保护作用,煤气和空气若是出现低压,将会出现事故。所以在煤气和空气主管道上,分别装有两个低压开关,在换热器前后也各装有一个。任意一个低压开关动作,将会使煤气主关断阀都会自动关闭,停炉,保护加热炉。
(3) 加热炉炉内压力控制
炉内压力一般要求保持微正压控制。炉压滞后大,时间常数小,因此采用前馈—负反馈调节。系统调节方块图如图2所示。


图2 系统调节方块图


3.3 换热器保护
常温的煤气、空气通过换热器后以300-4000C进入炉内燃烧。换热器的温度不能过高,也不能过低。过高损坏设备,过低会使煤气结露,生成弱酸腐蚀换热器。

3.4 PlD调节
PID调节部分共16路,包括预热段、加热上段、加热下段、均热上段、均热下段煤气、空气的温度、流量等参数的控制。PID控制主要通过PID控制单元,该单元主要有以下特性:
(1) l00ms高速采样周期,实现了高速PID控制;
(2) 输入信号的抗干扰
滤波器衰减输入噪音,控制输入意外干扰,使PID控制成为有效的快速响应系统;
(3) 多种输出规格可供选择;
(4) 八组数据设置;
八个数值(如设定点(SP)和报警设置值)可以预置在八个数据组中;
(5) 可以用数据设定器输入和显示当前值;
(6) 可以用PLC程序输入和检索数据。
同时我们通过PLC的程序实现加热炉的双交叉限幅燃烧系统控制,从而实现了加热炉的稳定运行。
PID控制可以分为本地控制和远程控制两种模式,远程控制即通过PLC实现的控制,又有自动和手动两种方式,自动控制即由PLC进行全自动控制,不需要进行人工干预。手动控制即在上位机上给定一个阀位输出值,通过PLC对阀位进行控制。在正常情况下都是在远程控制模式下的自动状态进行,并且每个PID控制回路的SV值、PV值、OUT值都可以在上位机上用棒图显示出来,非常直观。
同时在上位机上可以很方便地修改各燃烧介质温度、压力以及每个控制回路的PID参数,如设定值(SV)、“P”值、“I”值、“D”值,并且操作界面非常友好,操作方便。

4 双交叉限幅燃烧系统
加热炉所用空气、煤气流量波动频繁,同时煤气的热值等因素也会影响燃烧效果。对这些不利因素,所用燃烧控制系统由温度控制和流量控制组成,在控制系统中设计了高、低选择器、系统运算单元和一些平衡换算单元,并辅有流量的温压补偿,加热区上下段的主副控制。
4.1 温压补偿
在气体流量控制中,由于气体所处的温度、压力不同,需进行温压补偿。在本加热炉燃烧控制中,空气流量温压补偿设为K1计算公式如下:


按式(1)计算出的数值K1放在AOC149中,各空气流量变送器测的实际数值乘以此稳压补偿,在参与计算与控制。
煤气流量温压补偿设为K2,

按式(2)计算出的数值K2放在AOC150中,各煤气流量变送器测的实际数值乘以此稳压补偿,在参与计算与控制。

4.2 双交叉限幅燃烧控制与实现
炉内分预热段、上加热段、下加热段、上均热段、下均热段。煤气、空气流量调节系统共有十路,由于控制原理基本相同,现仅以均热上段的燃烧控制为例进行说明。
(1) 燃烧控制系统原理
在煤气流量调节回路中,炉温PID的输出A1与根据实测空气流量折算成需的煤气流量之后,分别乘以一个偏置系数K3,得到信号A2,乘以一个偏置系数K4得到信号A3,A1、A2、A3三者经过高低选择器比较,选中者作为煤气流量PID的设定值。空气流量调节回路中,炉温PID的输出B1,与根据实测煤气流量折算成所须空气流量之后,分别乘上一个偏置系数K1得到信号B2,乘上偏置系数K2得到信号B3,B1、B2、B3三者经高低选择器比较,选中者乘上流量补偿系数,送到空气PID作为设定值。
其系统组成原理图如图3所示。


图3 双交叉限幅燃烧控制原理


(2) 系统调节过程及特点
在系统稳定状态时,温度PID的输出以A1送到煤气 流量调节回路PID作为设定值,以B1送到空气流量调节回路PID作为设定值。
在负荷剧增(温测<温给)时,温度PID的输出剧增.对于空气流量调节回路,随着B1开始增加时,B1<B2,低选器选中B1,空气流量增加,当B1正跳变到B1>B2时,低选器选中B2,B1被中断,同时B3<B2,高选器选B2,B2作为该回路PID的设定值,使空气流量随着煤气流量的增加而增加,交叉限制作用开始,当B2增加到B2>B1时,低选器又选中B1,B1又作为该回路PID设定值,交叉限制作用结束,系统稳定。对于煤气流量调节回路,随着煤气流量的增加,高选器选A1,而低选器中,开始时选A1作为该回路PID的设定值,煤气流量增加,A1>A2时,低选气选A2,A1被中断,煤气流量随着空气流量增加而增加,交叉限制作用开始,当A2增加到A2>A1时,低选器又选A1,此时A1>A3,使交叉限制作用结束,系统恢复稳定。负荷剧减时相反。
可见负荷增加过程中,先开空气后开煤气,煤气和空气交替逐渐增加,从而保证充分燃烧,不产生黑烟。负荷减少时,先关煤气后关空气,空气和煤气交替逐渐减少,保证合理燃烧,不会空气过剩,带走热量。
一般取:K1/K3=0.9,K2/K4=1.1。在运行时再根据炉子结构,煤气热值加以修正。

5 结束语
该系统应用加热炉后运行稳定,也降低操作者的劳动强度,受到生产厂家的好评;该系统的操作也非常方便,凡是需要修改的参数都可以在上位机或者监控站上直接输入,如变频器的起/停、基准频率、每个PID控制回路的参数值等;另外,该系统价格低,投资少,降低了产品成本,效益显著。

参考文献
[1]COMMUNICATION DIAGRAM OF ABB INDUSTRIAL SYSTEMS.

作者简介
马 净(1977-) 女 工程师 主要从事工业自动化的开发与研究。

 


更多
字体:【】-【】-【】【关闭此页

上一篇:PLC在恒压供水变频调速控制系统中的'   下一篇:PLC在井冈山电厂输煤程控系统中的运'


特别声明:机电之家(http://www.jdzj.com )所共享的机电类资料,机电论文、机电类文章、机电企业类管理制度、机电类软件都来自网上收集,其版权归作者本人所有,如果有任何侵犯您权益的地方,请联系我们,我们将马上进行处理。购买的论文都出自原创,保证作者的原创的版权的转让,任何纠纷由法律解决。